Predictive nomogram of high-risk patients with active tuberculosis in latent tuberculosis infection

Author:

Li KuiORCID,Liu Siyi,He Yingli,Ran Renyu

Abstract

Introduction: The absence of predictive models for early latent tuberculosis infection (LTBI) progression persists. This study aimed to create a screening model to identify high-risk LTBI patients prome to active tuberculosis (ATB) reactivation. Methodology: Patients with confirmed ATB were enrolled alongside LTBI individuals as a reference, with relevant clinical data gathered. LASSO regression cross-validation reduced data dimensionality. A nomogram was developed using multiple logistic regression, internally validated with Bootstrap resampling. Evaluation included C-index, receiver operating characteristic (ROC) curve, and calibration curves, with clinical utility assessed through decision curve analysis. Results: The final nomogram incorporated serum albumin (OR = 1.337, p = 0.046), CD4+ (OR = 1.010, p = 0.004), and CD64 index (OR = 0.009, p = 0.020). The model achieved a C-index of 0.964, an area under the ROC curve of 0.962 (95% CI: 0.926–0.997), sensitivity of 0.971, and specificity of 0.910. Internal validation showed a mean absolute error of 0.013 and 86.4% identification accuracy. The decision curve indicated substantial net benefit at a risk threshold exceeding 10% (1: 9). Conclusions: This study established a biologically-rooted nomogram for high-risk LTBI patients prone to ATB reactivation, offering strong predictability, concordance, and clinical value. It serves as a personalized risk assessment tool, accurately identifying patients necessitating priority prophylactic treatment, complementing existing host risk factors effectively.

Publisher

Journal of Infection in Developing Countries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3