Comparative investigation of transport and deposition of nebulized particles in nasal airways following various middle turbinectomy

Author:

Ma R,Tian L,Wang Y,Sun S,Zhang J,Lou M,Hu Z,Gong M,Yang F,Zheng G,Dong J,Zhang Y

Abstract

BACKGROUND: Topical intranasal medication is required following functional endoscopic sinus surgery (FESS). The optimal particle size of transnasal nebulization aimed at the sinonasal cavities is not conclusive. The current study aims to evaluate the effect of particle size and various surgery scope of middle turbinectomy (MT) on post-full FESS drug delivery to the sinonasal cavities. METHODS: Sinonasal reconstructions were performed from post-full FESS CT scans in 6 chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Four additional models representing alternative surgery scopes of MT were established from each post-FESS reconstruction for simulation data comparison. Airflow and particle deposition of nebulized delivery were simulated via computational fluid dynamics (CFD) and validated through in vitro experiments. The optimal particle sizes reaching a deposition of at least 75% of the maximum in the targeted regions were identified. RESULTS: The drug deposition rate onto the targeted regions increased following MT, with the greatest deposition following posterior MT (P-MT). Droplets in the range of 18-26 μm reached a deposition of larger than 75% of the maximum onto the targeted regions. Drug delivery rate in the sinonasal cavities varied significantly among individuals and across different types of MT with varying surgical scopes. CONCLUSIONS: This study is the first to investigate the effect of various surgery scope on drug delivery by transnasal nebulization to the sinonasal cavities. The findings strongly affirm the vast potential of transnasal nebulization as an effective post-FESS treatment option. Moreover, it emphasizes that the drug delivery process via atomizers to the nasal cavity and paranasal sinuses is highly sensitive to the particle size.

Publisher

Stichting Nase

Subject

Otorhinolaryngology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3