Thymosin β4 regulates endothelial cell function via activating the AKT pathway

Author:

Tang Yong1,Dong Hao1,Lu Wenbin2,Zhang Xiaofeng1,Shen Xiao1,Zhang Peizhe1

Affiliation:

1. Department of Cardiology, Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, China

2. Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Zhongda, China

Abstract

The vascular eendothelial cells are highly heterogeneous and associated with numerous diseases. Thymosin β4 (Tβ4) plays pleiotropic roles in endothelial cell differentiation, migration and angiogenesis. However, the underlying mechanisms played by Tβ4 in the regulation of endothelial cells have not yet been well investigated. In the present study, Tβ4 -GFP adenovirus, transfected into human umbilical vein endothelial cells (HUVECs), and cell morphology were analyzed by fluorescence microscopy. ELISA was used to determine the concentration of Tβ4 expression. Furthermore, the effects of Tβ4 overexpression on HUVECs proliferation, apoptosis and migration were investigated. Real-time quantitative PCR and western blot were conducted to examine mRNA and protein expression in HUVECs with Tβ4 overexpression. Moreover, the underlying molecular mechanism of Tβ4 in HUVECs function was tested through treatment with LY294002, a PI3K/AKT inhibitor. Overexpression of Tβ4 increased the cell ability of HUVECs, and up-regulated the expression of the proliferation markers PCNA and Cyclin D1. In addition, overexpression of Tβ4 reduced HUVECs apoptosis, both under normoxic and hypoxic conditions. Moreover, overexpression of Tβ4 increased the ability of HUVECs to migrate through the membrane and up-regulated levels of MMP-2 and MMP-9. The use of LY294002 decreased the p-AKT (Ser473) level, which was induced by Tβ4 overexpression. Importantly, LY294002 reduced Tβ4-induced HUVECs proliferation and migration. In conclusion, our results suggest that Tβ4 is a major regulator of HUVECs function by activating the AKT signaling pathway.

Publisher

Universidad del Zulia

Subject

General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3