Oligomerization of C9 hydrocarbon fraction initiated by amino peroxides with cyclic substitute

Author:

Subtelnyy Roman1ORCID,Zhuravskyi Yevhenii1ORCID,Kichura Dariia1ORCID,Dzinyak Bohdan1ORCID

Affiliation:

1. Lviv Polytechnic National University , Ukraine

Abstract

This paper investigates the production of hydrocarbon resins by oligomerization in solution and suspension of the C9 fraction of by-products from oil refining. The disadvantage of existing technologies for oligomers by free radical oligomerization is the use of high reaction temperatures. The application of N-replaced amino peroxides as low-temperature initiators and a suspension oligomerization technology can reduce the temperature and duration of the reaction. The correlation between oligomerization parameters and yield and characteristics of oligomers has been established. Owing to this, it will be possible to set optimal conditions and predict the properties of the resulting products. The high values of the yield and bromine number correlation in oligomerization in solution (–0.98 and –0.95) and suspension (–0.83 and –0.80) indicate the course of the oligomerization reaction. The main factor influencing oligomerization in solution is the reaction temperature (correlation 0.80). The softening temperature of oligomers is in the range of 349‒353 K and does not depend on the oligomerization conditions in the solution (correlation indicator 0.18). Suspension oligomerization in the studied intervals does not depend on temperature (correlation −0.08) and initiator concentration (correlation 0.40). It is proved that in the studied intervals of variables, the yield of oligomers depends on the duration of the reaction (correlation 0.88). The color indicator of suspension oligomerization products at the studied intervals varies slightly and is 20–30 mg I2/100 ml. The established optimal conditions make it possible to effectively use oil refining by-products by synthesizing light oligomers. Under the established optimal conditions, the product yield is 22.7 % with oligomerization in solution and 19.4 % with suspension oligomerization.

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering,Food Science,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3