An analysis of SmBa0.5Sr0.5Co2O5+δ double perovskite oxide for intermediate–temperature solid oxide fuel cells

Author:

Subardi AdiORCID,Susanto IwanORCID,Kartikasari RatnaORCID,Tugino TuginoORCID,Kuntara HastaORCID,Wijaya Andy ErwinORCID,Purnomo Muhamad Jalu,Indra AdeORCID,Fahmi HendriwanORCID,Fu Yen-PeiORCID

Abstract

The main obstacle to solid oxide fuel cells (SOFCs) implementation is the high operating temperature in the range of 800–1,000 °C so that it has an impact on high costs. SOFCs work at high temperatures causing rapid breakdown between layers (anode, electrolyte, and cathode) because they have different thermal expansion. The study focused on reducing the operating temperature in the medium temperature range. SmBa0.5Sr0.5Co2O5+δ (SBSC) oxide was studied as a cathode material for IT-SOFCs based on Ce0.8Sm0.2O1.9 (SDC) electrolyte. The SBSC powder was prepared using the solid-state reaction method with repeated ball-milling and calcining. Alumina grinding balls are used because they have a high hardness to crush and smooth the powder of SOFC material. The specimens were then tested as cathode material for SOFC at intermediate temperature (600–800 °C) using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), electrochemical, and scanning electron microscopy (SEM) tests. The X-ray powder diffraction (XRD) pattern of SBSC powder can be indexed to a tetragonal space group (P4/mmm). The overall change in mass of the SBSC powder is 8 % at a temperature range of 125–800 °C. A sample of SBSC powder showed a high oxygen content (5+δ) that reached 5.92 and 5.41 at temperatures of 200 °C and 800 °C, respectively. High diffusion levels and increased surface activity of oxygen reduction reactions (ORRs) can be affected by high oxygen content (5+δ). The polarization resistance (Rp) of samples sintered at 1000 °C is 4.02 Ωcm2 at 600 °C, 1.04 Ωcm2 at 700 °C, and 0.42 Ωcm2 at 800 °C. The power density of the SBSC cathode is 336.1, 387.3, and 357.4 mW/cm2 at temperatures of 625 °C, 650 °C, and 675 °C, respectively. The SBSC demonstrates as a prospective cathode material for IT-SOFC

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3