Disrupting mechanical homeostasis promotes matrix metalloproteinase-13 mediated processing of neuron glial antigen 2 in mandibular condylar cartilage

Author:

Bagheri Varzaneh M,Zhao Y,Rozynek J,Han M,Reed DA

Abstract

Post-traumatic osteoarthritis in the temporomandibular joint (TMJ OA) is associated dysfunctional cellmatrix mediated signalling resulting from changes in the pericellular microenvironment after injury. Matrix metalloproteinase (MMP)-13 is a critical enzyme in biomineralisation and the progression of OA that can both degrade the extracellular matrix and modify extracellular receptors. This study focused on MMP-13 mediated changes in a transmembrane proteoglycan, Neuron Glial antigen 2 (NG2/CSPG4). NG2/CSPG4 is a receptor for type VI collagen and a known substrate for MMP-13. In healthy articular layer chondrocytes, NG2/CSPG4 is membrane bound but becomes internalised during TMJ OA. The objective of this study was to determine if MMP-13 contributed to the cleavage and internalisation of NG2/CSPG4 during mechanical loading and OA progression. Using preclinical and clinical samples, it was shown that MMP-13 was present in a spatiotemporally consistent pattern with NG2/CSPG4 internalisation during TMJ OA. In vitro, it was illustrated that inhibiting MMP-13 prevented retention of the NG2/CSPG4 ectodomain in the extracellular matrix. Inhibiting MMP-13 promoted the accumulation of membrane-associated NG2/CSPG4 but did not affect the formation of mechanical-loading dependent variant specific fragments of the ectodomain. MMP- 13 mediated cleavage of NG2/CSPG4 is necessary to initiate clathrin-mediated internalisation of the NG2/ CSPG4 intracellular domain following mechanical loading. This mechanically sensitive MMP-13-NG2/CSPG4 axis affected the expression of key mineralisation and OA genes including bone morphogenetic protein 2, and parathyroid hormone-related protein. Together, these findings implicated MMP-13 mediated cleavage of NG2/CSPG4 in the mechanical homeostasis of mandibular condylar cartilage during the progression of degenerative arthropathies such as OA.

Publisher

European Cells and Materials

Subject

General Medicine,Automotive Engineering,General Medicine,General Medicine,General Medicine,General Medicine,Pharmacology (medical),General Earth and Planetary Sciences,General Environmental Science,General Materials Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3