Development of a 3D-printed bioabsorbable composite scaffold with mechanical properties suitable for treating large, load-bearingarticular cartilage defects

Author:

Joyce M,Hodgkinson T,Lemoine M,González-Vázquez A,Kelly DJ,O’Brien FJ

Abstract

Extracellular matrix (ECM) biomaterials have shown promise for treating small artucular-joint defetcs. However, ECM-based biomaterials generally lack appropriate mechanical properties to support physiological loads and are prone to delamination in larger cartilage defects. To overcome these common mechanical limitations, a collagen hyaluronic-acid (CHyA) matrix, with proven regenerative potential, was reinforced with a bioabsorbable 3D-printed framework to support physiological loads. Polycaprolactone (PCL) was 3D-printed in two configurations, rectilinear and gyroid designs, that were extensively mechanically characterised. Both scaffold designs increased the compressive modulus of the CHyA matrices by three orders of magnitude, mimicking the physiological range (0.5-2.0 MPa) of healthy cartilage. The gyroid scaffold proved to be more flexible compared to the rectilinear scaffold, thus better contouring to the curvature of a femoral condyle. Additionally, PCL reinforcement of the CHyA matrix increased the tensile modulus and allowed for suture fixation of the scaffold to the subchondral bone, thus addressing the major challenge of biomaterial fixation to articular joint surfaces in shallow defects. In vitro evaluation confirmed successful infiltration of human mesenchymal stromal cells (MSCs) within the PCL-CHyA scaffolds, which resulted in increased production of sulphated glycosaminoglycans (sGAG/DNA; p = 0.0308) compared to non-reinforced CHyA matrices. Histological staining using alcian blue confirmed these results, while also indicating greater spatial distribution of sGAG throughout the PCL-CHyA scaffold. These findings have a great clinical importance as they provide evidence that reinforced PCL-CHyA scaffolds, with their increased chondroinductive potential and compatibility with joint fixation techniques, could be used to repair large-area chondral defects that currently lack effective treatment options.

Publisher

European Cells and Materials

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Education,Cultural Studies,Anesthesiology and Pain Medicine,General Medicine,Industrial and Manufacturing Engineering,Environmental Engineering,General Medicine,Literature and Literary Theory,History,Cultural Studies,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3