Monocarboxylate transporter 4 deficiency enhances high‐intensity interval training‐induced metabolic adaptations in skeletal muscle

Author:

Tamura Yuki12345ORCID,Jee Eunbin2,Kouzaki Karina367,Kotani Takaya3,Nakazato Koichi2367ORCID

Affiliation:

1. Faculty of Sport Science Nippon Sport Science University Tokyo Japan

2. Graduate School of Health and Sport Science Nippon Sport Science University Tokyo Japan

3. Research Institute for Sport Science Nippon Sport Science University Tokyo Japan

4. Sport Training Center Nippon Sport Science University Tokyo Japan

5. High Performance Center Nippon Sport Science University Tokyo Japan

6. Faculty of Medical Science Nippon Sport Science University Tokyo Japan

7. Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan

Abstract

AbstractHigh‐intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high‐intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high‐intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase – the rate‐limiting enzyme in the TCA cycle – and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high‐intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. imageKey points We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high‐intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high‐intensity exercise. Pairing MCT4 deficiency with high‐intensity interval training (HIIT) results in a synergistic boost in high‐intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3