Amplified P2X3 pathway activity in muscle afferent dorsal root ganglion neurons and exercise pressor reflex regulation in hindlimb ischaemia–reperfusion

Author:

Qin Lu1ORCID,Li Qin1,Li Jianhua1ORCID

Affiliation:

1. Heart and Vascular Institute Penn State College of Medicine Hershey Pennsylvania USA

Abstract

AbstractHindlimb ischaemia–reperfusion (IR) is among the most prominent pathophysiological conditions observed in peripheral artery disease (PAD). An exaggerated arterial blood pressure (BP) response during exercise is associated with an elevated risk of cardiovascular events in individuals with PAD. However, the precise mechanisms leading to this exaggerated BP response are poorly elucidated. The P2X3 signalling pathway, which plays a key role in modifying the exercise pressor reflex (EPR), is the focus of the present study. We determined the regulatory role of P2X3 on the EPR in a rat model of hindlimb IR. In vivo and in vitro approaches were used to determine the expression and functions of P2X3 in muscle afferent nerves and EPR in IR rats. We found that in IR rats there was (1) upregulation of P2X3 protein expression in the L4–6 dorsal root ganglia (DRG); (2) amplified P2X currents in isolated isolectin B4 (IB4)‐positive muscle DRG neurons; and (3) amplification of the P2X‐mediated BP response. We further verified that both A‐317491 and siRNA knockdown of P2X3 significantly decreased the activity of P2X currents in isolated muscle DRG neurons. Moreover, inhibition of muscle afferents’ P2X3 receptor using A‐317491 was observed to alleviate the exaggerated BP response induced by static muscle contraction and P2X‐induced BP response by α,β‐methylene ATP injection. P2X3 signalling pathway activity is amplified in muscle afferent DRG neurons in regulating the EPR following hindlimb IR.

Funder

National Heart, Lung, and Blood Institute

American Heart Association

Penn State College of Medicine

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3