Role of brain‐derived neurotrophic factor in endotoxaemia‐induced acute lung injury

Author:

Shi Jinye12,Song Shuang3,Wu Kaixuan2,Liang Gui2,Wang Aizhong2ORCID,Xu Xiaotao2ORCID

Affiliation:

1. College of Fisheries and Life Science Shanghai Ocean University Shanghai China

2. Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital Shanghai Jiao Tong University Shanghai China

3. Department of Respiratory Medicine, Affiliated Shanghai Sixth People's Hospital Shanghai Jiao Tong University Shanghai China

Abstract

AbstractAcute lung injury (ALI) or acute respiratory distress syndrome (ARDS), which is a pulmonary manifestation of a systemic reactive inflammatory syndrome, is a serious disease with high mortality, and sepsis is an important risk factor in the development of ALI. Brain‐derived neurotrophic factor (BDNF) is a member of the nerve growth factor family. It plays an essential role in the regulation of the modification of synaptic efficacy and brain metabolic activity and enhances neuronal survival. However, the role and underlying mechanism of BDNF in sepsis‐induced ALI remain unclear. Here, we sought to observe the expression of BDNF in the lung tissues of mice. C57BL/6J mice were divided randomly into two groups: saline (n = 4) and lipopolysaccharide (LPS) (n = 4). We found that BDNF expression was elevated in the lung tissues of septic mice. Furthermore, we found that BDNF colocalized with aquaporin 5, a marker for type I alveolar epithelial cells, by immunofluorescence staining. In addition, we also found that tropomyosin‐related kinase B, the specific receptor of BDNF, colocalized with surfactant protein C, a marker for type II alveolar epithelial cells, by immunofluorescence staining. Finally, the present study indicated that BDNF may alleviate excessive LPS‐induced autophagy in alveolar epithelial cells. Overall, we hypothesize that BDNF expression increases in the lung tissues of septic mice as a compensatory mechanism to ameliorate sepsis‐induced ALI by inhibiting excessive alveolar epithelial cell autophagy.

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3