Dietary nitrate preserves mitochondrial bioenergetics and mitochondrial protein synthesis rates during short‐term immobilization in mice

Author:

Petrick Heather L.12ORCID,Handy Rachel M.1ORCID,Vachon Bayley1,Frangos Sara M.1ORCID,Holwerda Andrew M.2ORCID,Gijsen Annemarie P.2,Senden Joan M.2,van Loon Luc J. C.2,Holloway Graham P.1ORCID

Affiliation:

1. Department of Human Health and Nutritional Sciences University of Guelph Guelph Ontario Canada

2. Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Medical Centre+ Maastricht The Netherlands

Abstract

AbstractSkeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse‐induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single‐limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate. Compared with the contralateral control limb, 3 days of immobilization lowered myofibrillar fractional synthesis rates (FSR, P < 0.0001), resulting in muscle atrophy. Although FSR and mitophagy‐related proteins were higher in subsarcolemmal (SS) compared with intermyofibrillar (IMF) mitochondria, immobilization for 3 days decreased FSR in both SS (P = 0.009) and IMF (P = 0.031) mitochondria. Additionally, 3 days of immobilization reduced maximal mitochondrial respiration, decreased mitochondrial protein content, and increased maximal mitochondrial reactive oxygen species emission, without altering mitophagy‐related proteins in muscle homogenate or isolated mitochondria (SS and IMF). Although nitrate consumption did not attenuate the decline in muscle mass or myofibrillar FSR, intriguingly, nitrate completely prevented immobilization‐induced reductions in SS and IMF mitochondrial FSR. In addition, nitrate prevented alterations in mitochondrial content and bioenergetics after both 3 and 7 days of immobilization. However, in contrast to 3 days of immobilization, nitrate did not prevent the decline in SS and IMF mitochondrial FSR after 7 days of immobilization. Therefore, although nitrate supplementation was not sufficient to prevent muscle atrophy, nitrate may represent a promising therapeutic strategy to maintain mitochondrial bioenergetics and transiently preserve mitochondrial protein synthesis rates during short‐term muscle disuse. imageKey points Alterations in mitochondrial bioenergetics (decreased respiration and increased reactive oxygen species) are thought to contribute to muscle atrophy and reduced protein synthesis rates during muscle disuse. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation could attenuate immobilization‐induced skeletal muscle impairments in female mice. Dietary nitrate prevented short‐term (3 day) immobilization‐induced declines in mitochondrial protein synthesis rates, reductions in markers of mitochondrial content, and alterations in mitochondrial bioenergetics. Despite these benefits and the preservation of mitochondrial content and bioenergetics during more prolonged (7 day) immobilization, nitrate consumption did not preserve skeletal muscle mass or myofibrillar protein synthesis rates. Overall, although dietary nitrate did not prevent atrophy, nitrate supplementation represents a promising nutritional approach to preserve mitochondrial function during muscle disuse.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3