Attenuation of muscle spindle firing with artificially increased series compliance during stretch of relaxed muscle

Author:

Abbott Emily M.1,Stephens Jacob D.2ORCID,Simha Surabhi N.2,Wood Leo3,Nardelli Paul4,Cope Timothy C.24ORCID,Sawicki Gregory S.45,Ting Lena H.26ORCID

Affiliation:

1. Department of Biomedical Engineering Duke University Durham North Carolina USA

2. Coulter Department of Biomedical Engineering Emory University and Georgia Institute of Technology Atlanta Georgia USA

3. School of Physics Georgia Institute of Technology Atlanta Georgia USA

4. School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA

5. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia USA

6. Department of Rehabilitation Medicine Emory University Atlanta Georgia USA

Abstract

AbstractMuscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle–tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp‐and‐hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor‐ and perturbation‐like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best‐correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3