A spectral method of modularity for community detection in bipartite networks

Author:

Wu GuolinORCID,Gu Changgui,Yang Huijie

Abstract

Abstract Community detection in bipartite networks is a popular topic. Two widely used methods to capture community structures in bipartite networks are the method of modularity and the method of graph partitioning. Our analytical results show that the modularity maximization problem can be reformulated as a spectral problem after relaxing the discreteness constraints. This means that the method of modularity and the method of graph partitioning are essentially equivalent. As an application, a spectral algorithm of modularity is devised for identifying community structures in bipartite networks. Experimental results on synthetic networks and real-world networks indicate that our algorithm performs better than those algorithms of modularity local maximization, such as BRIM (bipartite recursively induced moduls) and bLP (bipartite label propagation). Therefore, our results shed light on the methods of community detection in bipartite networks.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Natural Science Foundation of Shanghai

Undergraduate Teaching Reform Project of Higher Education in Guangxi

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference33 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3