Dynamics in direct two-photon transition by frequency combs

Author:

Dan Lin,Xu Hao,Guo Ping,Zhao Jianye

Abstract

Abstract Based on the proposed theoretical model of a three-level system, the optical Bloch equations including the direct two-photon transition (DTPT) process using the optical frequency comb (OFC) were derived and the population distribution of particles in the upper states varying with the velocity of the atoms was obtained. Comparing to the resonance two-photon transition process, that population was increased by a factor of 1.4 without the Doppler shift, which is consistent with our previous experimental results. Simultaneously, the relationships between momentum transfers, and atomic velocity and pulse number were analyzed. When applied to a multi-level system it was found that the population of particles in the excited states increased by a few percentages. The novel approach of DTPT using OFC improved the utilization of comb teeth and atoms, increased the momentum transfer path, reduced the reachable Doppler temperature limit, and encouraged us to use OFC to cool multiple elements simultaneously through the DTPT process. By analyzing the Doppler temperature of 133Cs and 87Rb in one dimension, it was found that this process can lower a temperature below 100 mK and generate dipolar molecules 133Cs87Rb via photoassociation, which provides us with a new tool to create dipolar molecules and to investigate their complex rovibrational spectra in ultra-cold chemistry.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3