Dehazing Algorithm for Enhancing Fundus Photographs Using Dark Channel and Bright Channel Prior

Author:

Park Sehie,Chung Hyungjin,Ye Jong Chul,Yi Kayoung

Abstract

Purpose: We present a dehazing algorithm using dark channel prior (DCP) and bright channel prior (BCP) to enhance the quality of retinal images obtained through conventional fundus photography.Methods: A retrospective analysis was conducted on retinal images from patients who visited Gangnam Sacred Heart Hospital between January 2000 and September 2022. These images were captured using a digital fundus camera (KOWA Nonmyd 8S Fundus Camera, KOWA Company, Nagoya, Japan) without pupil dilation. We used two mathematical algorithms: DCP only and DCP and BCP combined. The original, DCP-processed, and DCP & BCP-processed images were compared. Fisher's exact test was used to identify significant quality improvements.Results: The DCP and the newly proposed DCP plus BCP algorithm effectively eliminated haze and enhanced the contrast of cataract images. Notably, DCP demonstrated limited improvements in fundus photographs from patients with small pupils, whereas the proposed DCP plus BCP method effectively revealed previously obscured retinal details and vessels. However, these methods exhibited limited performance in severe cataracts compared to the clear images obtained after surgery. The quality enhancement with the proposed method was significant in photographs of patients with cataracts (<i>p</i> = 0.032) and small pupils (<i>p</i> < 0.01).Conclusions: Our algorithm produced clearer images of blood vessels and optic disc structures, while significantly reducing artifacts in fundus images from patients with small pupils or cataracts. The proposed algorithm can provide visually enhanced images, potentially aiding physicians in the diagnosis of retinal diseases in patients with cataracts.

Publisher

Korean Ophthalmological Society

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3