Constitutive Activation of Akt by Flt3 Internal Tandem Duplications Is Necessary for Increased Survival, Proliferation, and Myeloid Transformation

Author:

Brandts Christian H.12,Sargin Bülent1,Rode Miriam1,Biermann Christoph1,Lindtner Beate1,Schwäble Joachim1,Buerger Horst3,Müller-Tidow Carsten12,Choudhary Chunaram12,McMahon Martin4,Berdel Wolfgang E.1,Serve Hubert12

Affiliation:

1. 1Department of Medicine, Hematology and Oncology;

2. 2Interdisciplinary Center for Clinical Research; and

3. 3Institute of Pathology, University of Münster, Münster, Germany and

4. 4Comprehensive Cancer Center and Cancer Research Institute, University of California, San Francisco, California

Abstract

Abstract Up to 30% of patients with acute myeloid leukemia (AML) harbor internal tandem duplications (ITD) within the FLT3 gene, encoding a receptor tyrosine kinase. These mutations induce constitutive tyrosine kinase activity in the absence of the natural Flt3 ligand and confer growth factor independence, increased proliferation, and survival to myeloid precursor cells. The signaling pathways and downstream nuclear targets mediating leukemic transformation are only partly identified. Here, we show that the presence of Flt3-ITD constitutively activates Akt (PKB), a key serine-threonine kinase within the phosphatidylinositol 3-kinase pathway. Constitutive activation of Akt phosphorylated and inhibited the transcription factor Foxo3a. Restored Foxo3a activity reversed Flt3-ITD–mediated growth properties and dominant-negative Akt prevented Flt3-ITD–mediated cytokine independence. Conditional Akt activation targeted to the cell membrane induced cytokine-independent survival, cell cycle progression, and proliferation. Importantly, Akt activation was sufficient to cause in vitro transformation of 32D myeloid progenitor cells and in vivo promoted the development of a leukemia-like myeloid disease. Akt phosphorylation was found in myeloid blasts of 86% of AML patients, suggesting an important role in leukemogenesis. In summary, Akt is necessary for increased survival, proliferation, and leukemic transformation by Flt3-ITD, possibly by inactivation of Foxo transcription factors. These findings indicate that Akt and Foxo transcription factors are attractive targets for therapeutic intervention in AML.

Publisher

American Association for Cancer Research (AACR)

Reference32 articles.

1. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–8.

2. Yokota S, Kiyoi H, Nakao M, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–9.

3. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–80.

4. Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–9.

5. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3