Ketogenesis Attenuates KLF5-Dependent Production of CXCL12 to Overcome the Immunosuppressive Tumor Microenvironment in Colorectal Cancer

Author:

Wei Ruozheng12,Zhou Yuning2,Li Chang2,Rychahou Piotr23ORCID,Zhang Shulin24,Titlow William B.24,Bauman Greg5,Wu Yuanyuan2ORCID,Liu Jinpeng2,Wang Chi2,Weiss Heidi L.2,Evers B. Mark23ORCID,Wang Qingding23ORCID

Affiliation:

1. Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

2. Markey Cancer Center, University of Kentucky, Lexington, Kentucky.

3. Department of Surgery, University of Kentucky, Lexington, Kentucky.

4. Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky.

5. Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky.

Abstract

Abstract The dynamic composition of the tumor microenvironment (TME) can markedly alter the response to targeted therapies for colorectal cancer. Cancer-associated fibroblasts (CAF) are major components of TMEs that can direct and induce infiltration of immunosuppressive cells through secreted cytokines such as CXCL12. Ketogenic diets (KD) can inhibit tumor growth and enhance the anticancer effects of immune checkpoint blockade. However, the role of ketogenesis on the immunosuppressive TME is not known. Here, we show that decreased ketogenesis is a signature of colorectal cancer and that an increase in ketogenesis using a KD decreases CXCL12 production in tumors, serum, liver, and lungs. Moreover, increasing ketogenesis by overexpression of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) or treatment with the ketone body β-hydroxybutyrate markedly decreased expression of KLF5, which binds the CXCL12 promoter and induces CXCL12 expression in CAFs. KD decreased intratumoral accumulation of immunosuppressive cells, increased infiltration of natural killer and cytotoxic T cells, and enhanced the anticancer effects of PD-1 blockade in murine-derived colorectal cancer. Furthermore, increasing ketogenesis inhibited colorectal cancer migration, invasion, and metastasis in vitro and in vivo. Overall, ketogenesis is downregulated in the colorectal cancer TME, and increased ketogenesis represses KLF5-dependent CXCL12 expression to improve the immunosuppressive TME, which leads to the enhanced efficacy of immunotherapy and reduced metastasis. Importantly, this work demonstrates that downregulation of de novo ketogenesis in the TME is a critical step in colorectal cancer progression. Significance: This study identifies ketogenesis as a critical regulator of the tumor microenvironment in colorectal cancer and suggests the potential for ketogenic diets as a metabolic strategy to overcome immunosuppression and prolong survival. See related commentary by Montrose and Galluzzi, p. 1464

Funder

National Institutes of Health

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3