Long Noncoding RNA MSL3P1 Regulates CUL3 mRNA Cytoplasmic Transport and Stability and Promotes Lung Adenocarcinoma Metastasis

Author:

Shao Ming-Ming1ORCID,Li Xin2ORCID,Wei Rui-Qi1ORCID,Chen Qing-Yu1ORCID,Zhang Xin13ORCID,Qiao Xin14ORCID,Li Hui2ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China. 1

2. Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China. 2

3. Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China. 3

4. Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China. 4

Abstract

Abstract Lung adenocarcinoma (LUAD) is the most prevalent histological type of lung cancer. Previous studies have reported that specific long noncoding RNAs (lncRNA) are involved in cancer development and progression. The phenotype and mechanism of ENST00000440028, named MSL3P1, an lncRNA referred to as a cancer-testis gene with potential roles in tumorigenesis and progression, have not been reported. MSL3P1 is overexpressed in LUAD tumor tissues, which is significantly associated with clinical characteristics, metastasis, and poor clinical prognosis. MSL3P1 promotes the metastasis of LUAD in vitro and in vivo. The enhancer reprogramming in LUAD tumor tissue is the major driver of the aberrant expression of MSL3P1. Mechanistically, owing to the competitive binding to CUL3 mRNA with ZFC3H1 protein (a protein involved in targeting polyadenylated RNA to exosomes and promoting the degradation of target mRNA), MSL3P1 can prevent the ZFC3H1-mediated RNA degradation of CUL3 mRNA and transport it to the cytoplasm. This activates the downstream epithelial-to-mesenchymal transition signaling pathway and promotes tumor invasion and metastasis. Implications: This study indicates that lncRNA MSL3P1 regulates CUL3 mRNA stability and promotes metastasis and holds potential as a prognostic biomarker and therapeutic target in LUAD.

Funder

National Natural Science Foundation of China

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3