Distinct Regulation of ASCL1 by the Cell Cycle and Chemotherapy in Small Cell Lung Cancer

Author:

Liu Yuning1ORCID,Wu Qingzhe2ORCID,Jiang Bin3ORCID,Hou Tingting4ORCID,Wu Chuanqiang1ORCID,Wu Ming1ORCID,Song Hai125ORCID

Affiliation:

1. 1Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

2. 2Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.

3. 3Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.

4. 4College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, China.

5. 5The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.

Abstract

Abstract Small cell lung cancer (SCLC) is an aggressive and lethal malignancy. Achaete-scute homolog 1 (ASCL1) is essential for the initiation of SCLC in mice and the development of pulmonary neuroendocrine cells (PNEC), which are the major cells of origin for SCLC. However, the regulatory mechanism of ASCL1 in SCLC remains elusive. Here, we found that ASCL1 expression gradually increases as the tumors grow in a mouse SCLC model, and is regulated by the cell cycle. Mechanistically, CDK2–CyclinA2 complex phosphorylates ASCL1, which results in increased proteasome-mediated ASCL1 protein degradation by E3 ubiquitin ligase HUWE1 during mitosis. TCF3 promotes the multisite phosphorylation of ASCL1 through the CDK2–CyclinA2 complex and the interaction between ASCL1 and TCF3 protects ASCL1 from degradation. The dissociation of TCF3 from ASCL1 during mitosis accelerates the degradation of ASCL1. In addition, chemotherapy drugs greatly reduce the transcription of ASCL1 in SCLC cells. Depletion of ASCL1 sensitizes SCLC cells to chemotherapy drugs. Together, our study demonstrates that ASCL1 is a cell-cycle–regulated protein and provides a theoretical basis for applying cell-cycle–related antitumor drugs in SCLC treatment. Implications:Our study revealed a novel regulatory mechanism of ASCL1 by cell cycle and chemotherapy drugs in SCLC. Treating patients with SCLC with a combination of ASCL1-targeting therapy and chemotherapy drugs could potentially be beneficial.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3