HCK Promotes High-Grade Serous Ovarian Cancer Tumorigenesis through CD44 and NOTCH3 Signaling

Author:

Khella Christen A.123ORCID,Franciosa Lucyann2ORCID,Rodirguez-Rodriguez Lorna4ORCID,Rajkarnikar Resha5ORCID,Mythreye Karthikeyan5ORCID,Gatza Michael L.12ORCID

Affiliation:

1. 1Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, New Jersey.

2. 2Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.

3. 3School of Graduate Studies, Rutgers University, New Brunswick, New Jersey.

4. 4Department of Surgery, City of Hope National Medical Center, Duarte, California.

5. 5Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama, Birmingham, Alabama.

Abstract

Abstract High-grade serous ovarian cancer (HGSOC) is a highly aggressive and lethal subtype of ovarian cancer. While most patients initially respond to standard-of-care treatment, the majority will eventually relapse and succumb to their disease. Despite significant advances in our understanding of this disease, the mechanisms that govern the distinctions between HGSOC with good and poor prognosis remain unclear. In this study, we implemented a proteogenomic approach to analyze gene expression, proteomic and phosphoproteomic profiles of HGSOC tumor samples to identify molecular pathways that distinguish HGSOC tumors relative to clinical outcome. Our analyses identify significant upregulation of hematopoietic cell kinase (HCK) expression and signaling in poor prognostic HGSOC patient samples. Analyses of independent gene expression datasets and IHC of patient samples confirmed increased HCK signaling in tumors relative to normal fallopian or ovarian samples and demonstrated aberrant expression in tumor epithelial cells. Consistent with the association between HCK expression and tumor aggressiveness in patient samples, in vitro phenotypic studies showed that HCK can, in part, promote cell proliferation, colony formation, and invasive capacity of cell lines. Mechanistically, HCK mediates these phenotypes, partly through CD44 and NOTCH3-dependent signaling, and inhibiting CD44 or NOTCH3 activity, either genetically or through gamma-secretase inhibitors, can revert HCK-driven phenotypes. Implications: Collectively, these studies establish that HCK acts as an oncogenic driver of HGSOC through aberrant activation of CD44 and NOTCH3 signaling and identifies this network as a potential therapeutic opportunity in a subset of patients with aggressive and recurrent HGSOC.

Funder

National Cancer Institute

American Cancer Society

Rutgers Cancer Institute of New Jersey

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3