A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma

Author:

Guerrero Camila1ORCID,Puig Noemi2,Cedena Maria-Teresa3ORCID,Goicoechea Ibai1ORCID,Perez Cristina1,Garcés Juan-José1ORCID,Botta Cirino4ORCID,Calasanz Maria-Jose1ORCID,Gutierrez Norma C.2,Martin-Ramos Maria-Luisa3,Oriol Albert5,Rios Rafael6ORCID,Hernandez Miguel-Teodoro7,Martinez-Martinez Rafael8,Bargay Joan9,de Arriba Felipe10ORCID,Palomera Luis11,Gonzalez-Rodriguez Ana Pilar12ORCID,Mosquera-Orgueira Adrian13,Gonzalez-Perez Marta-Sonia13,Martinez-Lopez Joaquin3,Lahuerta Juan-José3ORCID,Rosiñol Laura14ORCID,Blade Joan14,Mateos Maria-Victoria2,San-Miguel Jesus F.1,Paiva Bruno1

Affiliation:

1. 1Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.

2. 2Instituto de investigacion biomedica de Salamanca (IBSAL), Hospital Universitario de Salamanca Hematologia, Salamanca, Spain.

3. 3Hospital Universitario 12 de Octubre, Madrid, Spain.

4. 4Hematology Unit, Department of Oncology, Annunziata Hospital, Cosenza, Italy.

5. 5Institut Catala d'Oncologia L'Hospitalet, Barcelona, Spain.

6. 6Hospital Universitario Virgen de las Nieves, Instituto de Investigacion Biosanitaria, Granada, Spain.

7. 7Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain.

8. 8Hospital Clinico Universitario San Carlos, Madrid, Spain.

9. 9Hospital Universitario Son Llatzer, Institut d' investigacio Illes Balears (IdISBa), Palma de Mallorca, Spain.

10. 10Hospital Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain.

11. 11Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain.

12. 12Hospital Central de Asturias, Oviedo, Spain.

13. 13Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.

14. 14Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

Abstract

Abstract Purpose: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. Experimental Design: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. Results: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. Conclusions: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482

Funder

Instituto de Salud Carlos III

European Regional Development Fund-FEDER

European Union

Cancer Research UK

European Research Council

CRIS Cancer Foundation

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3