Bystander Effects, Pharmacokinetics, and Linker-Payload Stability of EGFR-Targeting Antibody-Drug Conjugates Losatuxizumab Vedotin and Depatux-M in Glioblastoma Models

Author:

Jain Sonia1ORCID,Griffith Jessica I.2ORCID,Porath Kendra A.1ORCID,Rathi Sneha2ORCID,Le Jiayan2ORCID,Pasa Tugce I.3ORCID,Decker Paul A.4ORCID,Gupta Shiv K.1ORCID,Hu Zeng1ORCID,Carlson Brett L.1ORCID,Bakken Katrina1ORCID,Burgenske Danielle M.1ORCID,Feldsien Thomas M.5ORCID,Lefebvre Didier R.5ORCID,Vaubel Rachael A.3ORCID,Eckel-Passow Jeanette E.4ORCID,Reilly Edward B.6ORCID,Elmquist William F.2ORCID,Sarkaria Jann N.1ORCID

Affiliation:

1. Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota. 1

2. Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota. 2

3. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota. 3

4. Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota. 4

5. Development Sciences, AbbVie Inc., North Chicago, Illinois. 5

6. Discovery Oncology, AbbVie Inc., North Chicago, Illinois. 6

Abstract

Abstract Purpose: Antibody-drug conjugates (ADC) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given GBM’s molecular heterogeneity, the bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs with similar auristatin toxins, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), were compared in GBM patient-derived xenografts (PDX) and normal murine brain following direct infusion by convection-enhanced delivery (CED). Experimental Design: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Nontumor-bearing mice were used to evaluate the pharmacokinetics (PK) and toxicity of ADCs using LC-MS/MS and immunohistochemistry. Results: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs. 20–49 days with isotype control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221 with the cell-permeable monomethyl auristatin E (MMAE), compared with Depatux-M with the cell-impermeant monomethyl auristatin F. CED infusion of ABBV-221 into the brain or incubation of ABBV-221 with normal brain homogenate resulted in a significant release of MMAE, consistent with linker instability in the brain microenvironment. Conclusions: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intratumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.

Funder

Mayo Clinic

National Brain Tumor Society

National Cancer Institute

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3