Development of a Histopathology Informatics Pipeline for Classification and Prediction of Clinical Outcomes in Subtypes of Renal Cell Carcinoma

Author:

Marostica Eliana1ORCID,Barber Rebecca12,Denize Thomas3ORCID,Kohane Isaac S.1ORCID,Signoretti Sabina3ORCID,Golden Jeffrey A.34,Yu Kun-Hsing13ORCID

Affiliation:

1. 1Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.

2. 2Department of Computer Science, Princeton University, Princeton, New Jersey.

3. 3Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.

4. 4Cedars-Sinai Medical Center, Los Angeles, California.

Abstract

Abstract Purpose: Histopathology evaluation is the gold standard for diagnosing clear cell (ccRCC), papillary, and chromophobe renal cell carcinoma (RCC). However, interrater variability has been reported, and the whole-slide histopathology images likely contain underutilized biological signals predictive of genomic profiles. Experimental Design: To address this knowledge gap, we obtained whole-slide histopathology images and demographic, genomic, and clinical data from The Cancer Genome Atlas, the Clinical Proteomic Tumor Analysis Consortium, and Brigham and Women's Hospital (Boston, MA) to develop computational methods for integrating data analyses. Leveraging these large and diverse datasets, we developed fully automated convolutional neural networks to diagnose renal cancers and connect quantitative pathology patterns with patients' genomic profiles and prognoses. Results: Our deep convolutional neural networks successfully detected malignancy (AUC in the independent validation cohort: 0.964–0.985), diagnosed RCC histologic subtypes (independent validation AUCs of the best models: 0.953–0.993), and predicted stage I ccRCC patients' survival outcomes (log-rank test P = 0.02). Our machine learning approaches further identified histopathology image features indicative of copy-number alterations (AUC > 0.7 in multiple genes in patients with ccRCC) and tumor mutation burden. Conclusions: Our results suggest that convolutional neural networks can extract histologic signals predictive of patients' diagnoses, prognoses, and genomic variations of clinical importance. Our approaches can systematically identify previously unknown relations among diverse data modalities.

Funder

Pittsburgh Supercomputing Center

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3