T cell–Dependent Bispecific Therapy Enhances Innate Immune Activation and Antibody-Mediated Killing

Author:

Besla Rickvinder1ORCID,Penuel Elicia1ORCID,Del Rosario Geoff1ORCID,Cosino Ely1ORCID,Myrta Szymon2ORCID,Dillon Mike1ORCID,Lazar Greg A.1ORCID,Nickles Dorothee1ORCID,Spiess Christoph1ORCID,Yu Shang-Fan1ORCID,Polson Andrew G.1ORCID

Affiliation:

1. 1Genentech Research and Early Development, Genentech Inc., South San Francisco, California.

2. 2Roche Global IT Solution Centre, Warsaw, Poland.

Abstract

Abstract T cell–retargeting therapies have transformed the therapeutic landscape for hematologic diseases. T cell–dependent bispecific antibodies (TDB) function as conditional agonists that induce a polyclonal T-cell response, resulting in target cell destruction and cytokine release. The relationship between this response and its effects on surrounding innate immune populations has not been fully explored. Here we show that treatment with mosunetuzumab in patients results in natural killer (NK) cell activation in the peripheral blood. We modeled this phenomenon in vitro and found that TDB-mediated killing activated NK cells, increasing NK function and antibody-dependent cellular cytotoxicity (ADCC), and enhanced the capability of macrophages to perform antibody-dependent cellular phagocytosis (ADCP). This enhancement was triggered by cytokines released through TDB treatment, with IL2 and IFNγ being major drivers for increased ADCC and ADCP, respectively. Surprisingly, cytolytic ability could be further augmented through neutralization of IL10 for NK cells and TNFα for macrophages. Finally, we showed that TDB treatment enhanced the efficacy of Fc-driven killing to an orthogonal solid tumor target in vivo. These results provide rationale for novel antibody therapy combinations that take advantage of both adaptive and innate immune responses.

Funder

Genentech

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3