Mathematical Modeling of Tumor Growth in Preclinical Mouse Models with Applications in Biomarker Discovery and Drug Mechanism Studies

Author:

Zhou Huajun1ORCID,Mao Binchen1ORCID,Guo Sheng1ORCID

Affiliation:

1. Crown Bioscience Inc., Suzhou, China

Abstract

Abstract Oncology drug efficacy is evaluated in mouse models by continuously monitoring tumor volumes, which can be mathematically described by growth kinetic models. Although past studies have investigated various growth models, their reliance on small datasets raises concerns about whether their findings are truly representative of tumor growth in diverse mouse models under different vehicle or drug treatments. In this study, we systematically evaluated six parametric models (exponential, exponential quadratic, monomolecular, logistic, Gompertz, and von Bertalanffy) and the semiparametric generalized additive model (GAM) on fitting tumor volume data from more than 30,000 mice in 930 experiments conducted in patient-derived xenografts, cell line–derived xenografts, and syngeneic models. We found that the exponential quadratic model is the best parametric model and can adequately model 87% studies, higher than other models including von Bertalanffy (82%) and Gompertz (80%) models; the latter is often considered the standard growth model. At the mouse group level, 7.5% of growth data could not be fit by any parametric model and were fitted by GAM. We show that endpoint gain integrated in time, a GAM-derived efficacy metric, is equivalent to exponential growth rate, a metric we previously proposed and conveniently calculated by simple algebra. Using five studies on paclitaxel, anti-PD1 antibody, cetuximab, irinotecan, and sorafenib, we showed that exponential and exponential quadratic models achieve similar performance in uncovering drug mechanism and biomarkers. We also compared exponential growth rate–based association analysis and exponential modeling approach in biomarker discovery and found that they complement each other. Modeling methods herein are implemented in an open-source R package freely available at https://github.com/hjzhou988/TuGroMix. Significance: We present a general strategy for mathematically modeling tumor growth in mouse models using data from 30,000 mice and show that modeling and nonmodeling approaches are complementary in biomarker discovery and drug mechanism studies.

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3