A Revised Molecular Model of Ovarian Cancer Biomarker CA125 (MUC16) Enabled by Long-read Sequencing

Author:

Wang Chien-Wei1ORCID,Weaver Simon D.23ORCID,Boonpattrawong Nicha4ORCID,Schuster-Little Naviya1ORCID,Patankar Manish4ORCID,Whelan Rebecca J.1ORCID

Affiliation:

1. 1Department of Chemistry, University of Kansas, Lawrence, Kansas.

2. 2Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana.

3. 3Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana.

4. 4Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin.

Abstract

Abstract The biomarker CA125, a peptide epitope located in several tandem repeats of the mucin MUC16, is the gold standard for monitoring regression and recurrence of high-grade serous ovarian cancer in response to therapy. However, the CA125 epitope along with several structural features of the MUC16 molecule are ill defined. One central aspect still unresolved is the number of tandem repeats in MUC16 and how many of these repeats contain the CA125 epitope. Studies from the early 2000s assembled short DNA reads to estimate that MUC16 contained 63 repeats. Here, we conduct Nanopore long-read sequencing of MUC16 transcripts from three primary ovarian tumors and established cell lines (OVCAR3, OVCAR5, and Kuramochi) for a more exhaustive and accurate estimation and sequencing of the MUC16 tandem repeats. The consensus sequence derived from these six sources was confirmed by proteomics validation and agrees with recent additions to the NCBI database. We propose a model of MUC16 containing 19—not 63—tandem repeats. In addition, we predict the structure of the tandem repeat domain using the deep learning algorithm, AlphaFold. The predicted structure displays an SEA domain and unstructured linker region rich in proline, serine, and threonine residues in all 19 tandem repeats. These studies now pave the way for a detailed characterization of the CA125 epitope. Sequencing and modeling of the MUC16 tandem repeats along with their glycoproteomic characterization, currently underway in our laboratories, will help identify novel epitopes in the MUC16 molecule that improve on the sensitivity and clinical utility of the current CA125 assay. Significance: Despite its crucial role in clinical management of ovarian cancer, the exact molecular sequence and structure of the biomarker, CA125, are not defined. Here, we combine long-read sequencing, mass spectrometry, and in silico modeling to provide the foundational dataset for a more complete characterization of the CA125 epitope.

Funder

HHS | NIH | National Cancer Institute

Tell Every Amazing Lady About Ovarian Cancer Louisa M. McGregor Ovarian Cancer Foundation

HHS | NIH | National Institute of General Medical Sciences

Veterans Administration Medical Center

Diane Lindstrom Funds

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3