Automated decision support for Hallux Valgus treatment options using anteroposterior foot radiographs

Author:

Kwolek Konrad,Gądek Artur,Kwolek Kamil,Kolecki Radek,Liszka Henryk

Abstract

BACKGROUND Assessment of the potential utility of deep learning with subsequent image analysis to automate the measurement of hallux valgus and intermetatarsal angles from radiographs to serve as a preoperative aid in establishing hallux valgus severity for clinical decision-making. AIM To investigate the accuracy of automated measurements of angles of hallux valgus from radiographs for further integration with the preoperative planning process. METHODS The data comprises 265 consecutive digital anteroposterior weightbearing foot radiographs. 181 radiographs were utilized for training (161) and validating (20) a U-Net neural network to achieve a mean Sørensen–Dice index > 97% on bone segmentation. 84 test radiographs were used for manual (computer assisted) and automated measurements of hallux valgus severity determined by hallux valgus (HVA) and intermetatarsal angles (IMA). The reliability of manual and computer-based measurements was calculated using the interclass correlation coefficient (ICC) and standard error of measurement (SEM). Inter- and intraobserver reliability coefficients were also compared. An operative treatment recommendation was then applied to compare results between automated and manual angle measurements. RESULTS Very high reliability was achieved for HVA and IMA between the manual measurements of three independent clinicians. For HVA, the ICC between manual measurements was 0.96-0.99. For IMA, ICC was 0.78-0.95. Comparing manual against automated computer measurement, the reliability was high as well. For HVA, absolute agreement ICC and consistency ICC were 0.97, and SEM was 0.32. For IMA, absolute agreement ICC was 0.75, consistency ICC was 0.89, and SEM was 0.21. Additionally, a strong correlation (0.80) was observed between our approach and traditional clinical adjudication for preoperative planning of hallux valgus, according to an operative treatment algorithm proposed by EFORT. CONCLUSION The proposed automated, artificial intelligence assisted determination of hallux valgus angles based on deep learning holds great potential as an accurate and efficient tool, with comparable accuracy to manual measurements by expert clinicians. Our approach can be effectively implemented in clinical practice to determine the angles of hallux valgus from radiographs, classify the deformity severity, streamline preoperative decision-making prior to corrective surgery.

Publisher

Baishideng Publishing Group Inc.

Subject

Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3