Estimating the Expected Influence Capacities of Nodes in Complex Networks under the Susceptible-Infectious-Recovered Model

Author:

Şimşek Aybike1ORCID

Affiliation:

1. MİLLİ SAVUNMA ÜNİVERSİTESİ

Abstract

In recent years, epidemic modeling in complex networks has found many applications, including modeling of information or gossip spread in online social networks, modeling of malware spread in communication networks, and the most recent model of the COVID-19 pandemic. If the information disseminated is accurate, for example, maximizing its distribution is desirable, whereas if it is a rumor or a virus, its spread should be minimized. In this context, it is very important to identify super-spreaders that maximize or minimize propagation. Lately, studies for detecting super-spreaders have gained momentum. Most of the studies carried out aim to distinguish the influences of nodes under a specific propagation model (such as SIR) using network centrality measures and subsequently, to rank the nodes accordingly. However, in this study, we developed an algorithm that approximates the expected influence of nodes under the popular SIR model. By considering the behavior of the SIR model and only the shortest paths between nodes, the algorithm ranks the nodes according to this approximated value. Our developed algorithm is named the Expected Value Estimation (EVE). We compared the performance of EVE, using different SIR settings on real-world datasets, with that of many current well-known centrality measures. The experimental studies demonstrated that the solution quality (ranking capability) of EVE is superior to that of its competitors.

Publisher

Bitlis Eren Universitesi Fen Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3