Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress

Author:

DU Jian-tong,LI Wei,YANG Jin-yan,TANG Chao-shu,LI Qi,JIN Hong-fang

Abstract

Background Skeletal muscle has recently been recognized as an endocrine organ that can express, synthesize and secrete a variety of bioactive molecules which exert significant regulatory effects. Hydrogen sulfide (H2S) is endogenously produced in mammalian tissues and participates in a number of physiological and pathophysiological processes. We aimed to verify whether H2S could be endogenously generated and released by rat skeletal muscle, and determine the biological effects of H2S in rat skeletal muscle. Methods The study was divided into two parts: detection of endogenous H2S generation and release in rat skeletal muscle and determination of antioxidative activity of skeletal muscle-derived H2S. H2S content and production in tissues were detected by sensitive sulfur electrode method. The expressions of H2S producing enzymes cystathionine β-synthase, cystathionine γ-lyase and mercaptopyruvate sulfurtransferase were detected by real-time PCR and western blotting and their tissue distributions were observed by immunohistochemical and immunofluorescent analysis. Rat skeletal muscular ischemia-reperfusion (I-R) injury model was created and evaluated by histological analysis under microscope. The malondialdehyde (MDA) contents, hydrogen peroxide levels, superoxide anion and superoxide dismutase (SOD) activities were detected using spectrophotometer. Results H2S could be endogenously generated and released by skeletal muscle of Sprague-Dawley rats (H2S content: (2.06±0.43) nmol/mg; H2S production: (0.17±0.06) nmol·min-1·mg-1). Gene and protein expressions of the three H2S producing enzymes were detected in skeletal muscle, as well as the liver and kidney. Endogenous H2S content and production were decreased in skeletal muscles of rats with I-R skeletal muscle injury (P <0.05). Furthermore, H2S significantly protected rat skeletal muscle against I-R injury and resulted in decreased MDA content, reduced hydrogen peroxide and superoxide anion levels, but increased SOD activity and protein expression in skeletal muscles (all P <0.01). Conclusion H2S generation pathway exists in rat skeletal muscle and it acts as an antioxidant in skeletal muscle.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3