Sociotechnical Envelopment of Artificial Intelligence: An Approach to Organizational Deployment of Inscrutable Artificial Intelligence Systems

Author:

Asatiani Aleksandre, ,Malo Pekka,Nagbøl Per Rådberg,Penttinen Esko,Rinta-Kahila Tapani,Salovaara Antti, , , , ,

Abstract

The paper presents an approach for implementing inscrutable (i.e., nonexplainable) artificial intelligence (AI) such as neural networks in an accountable and safe manner in organizational settings. Drawing on an exploratory case study and the recently proposed concept of envelopment, it describes a case of an organization successfully “enveloping” its AI solutions to balance the performance benefits of flexible AI models with the risks that inscrutable models can entail. The authors present several envelopment methods—establishing clear boundaries within which the AI is to interact with its surroundings, choosing and curating the training data well, and appropriately managing input and output sources—alongside their influence on the choice of AI models within the organization. This work makes two key contributions: It introduces the concept of sociotechnical envelopment by demonstrating the ways in which an organization’s successful AI envelopment depends on the interaction of social and technical factors, thus extending the literature’s focus beyond mere technical issues. Secondly, the empirical examples illustrate how operationalizing a sociotechnical envelopment enables an organization to manage the trade-off between low explainability and high performance presented by inscrutable models. These contributions pave the way for more responsible, accountable AI implementations in organizations, whereby humans can gain better control of even inscrutable machine-learning models.

Publisher

Association for Information Systems

Subject

Computer Science Applications,Information Systems

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3