Signaling of Reactive Oxygen and Nitrogen Species in Diabetes Mellitus

Author:

Afanas'ev Igor1

Affiliation:

1. Vitamin Research Institute, Moscow, Russia

Abstract

Disorder of physiological signaling functions of reactive oxygen species(ROS) superoxide and hydrogen peroxide and reactive nitrogen species (RNS) nitric oxide and peroxynitrite is an important feature of diabetes mellitus type 1 and type 2. It is now known that hyperglycemic conditions of cells are associated with the enhanced levels of ROS mainly generated by mitochondria and NADPH oxidase. It has been established that ROS stimulate many enzymatic cascades under normal physiological conditions, but hyperglycemia causes ROS overproduction and the deregulation of ROS signaling pathways initiating the development of diabetes mellitus. On the other hand the deregulation of RNS signaling leads basically to a decrease in NO formation with subsequent damaging disorders. In the present work we will consider the pathological changes of ROS and RNS signaling in enzyme/gene regulated processes catalyzed by protein kinases C and B (Akt/B), phosphatidylinositol 3′-kinase (PI3-kinase), extracellular signal-regulated kinase 1/2 (ERK1/2) and some others. Furthermore we will discuss a particularly important role of several ROS-regulated genes and adapter proteins such as the p66shc, FOXO3a and Sirt2. The effects of low and high ROS levels in diabetes will be also considered. Thus the regulation of damaging ROS levels in diabetes by antioxidants and free radical scavengers must be one of promising treatment of this disease, however, because of the inability of traditionalantioxidative vitamin E and C to interact with superoxide and hydrogen peroxide,new free radical scavengers such as flavonoids, quinones and synthetic mimetics of superoxide dismutase (SOD) should be intensively studied.

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3