Virtual Discovery of Immune-Stimulating Epitopes in Chikungunya Virus for Vaccine Design

Author:

Ezediuno Louis O.1,Ockiya Michael A.2,David Kehinde B.3,Awoniyi Luqman O.4,Robert Faith O.5,Oladipo Elijah K.6,Majolagbe Olusola N.7

Affiliation:

1. Department of Microbiology, Faculty of Life Science, University of Benin, Nigeria; Department of Microbiology, University of Ilorin, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria; Biodata Analytical Laboratory, Abeokuta, Nigeria

2. Department of Animal Science, Faculty of Agriculture, Niger Delta University, Wilberforce Island, Nigeria

3. Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria

4. Institute of Biomedicine and MedCity Research Laboratories, University of Turku, Finland

5. Department of Medical Biochemistry, Rivers State University, Port Harcourt, Nigeria

6. Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, Ede, Nigeria

7. Department of Microbiology, University of Ilorin, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria

Abstract

Epitope identification is a key step in vaccine development, and this can be achieved much faster and less expensively with in silico methods, compared to traditional methods for vaccine production. In silico methods applied in this research utilised both bioinformatics and immunoinformatics approaches for chikungunya virus vaccine design, which involved the retrieval of sequences from databases, and identification of conserved regions within the sequences by multiple sequence alignment on the MEGA X software (Pennsylvania State University, State College, USA). The epitopes in the conserved regions were selected, and various immunological predictions and screenings were carried out by employing immunological databases and tools. This process identifies epitopes such as conservation of cytotoxic T lymphocyte, helper T lymphocytes, and B cell epitopes. The primary, secondary, and tertiary structure of the vaccine was also predicted using structure predicting servers, and finally, the vaccine candidate was docked to toll-like receptor 4 to study its binding affinity and configuration. A total of 125 conserved antigenic epitopes were selected from capsid, 6K, and E1 proteins, which were found to be non-allergens and conform to acceptable physicochemical standards, as reported by other authors with similar work. The epitopes were predicted to be capable of inducing cytotoxic T lymphocytes, helper T lymphocytes, and B cell production. Construction of secondary structure was done using the Self-Optimized Prediction Method with Alignment (SOPMA), which predicted 17.96% α-helices, and 4.69% β-turns, among others. Predicting the tertiary structure provided five models, of which Model 1 was selected on the bases of its confidential score of 0.59, estimated TM-score of 0.79±0.09, and root mean square deviation of 8.0±4.4Å. Validity analysis revealed a Ramachandran plot where 97.2% of the vaccine residue was within the favoured region, and the peptide showed a Z-score of -1.52. The predicted peptide effectively docked with toll-like receptor 4 with a binding energy of -1,072.8. From the data obtained, it was revealed that the selected epitopes are highly immunogenic, non-allergenic, conform to native protein, and form a peptide capable of vaccine application. The authors can conclude this is a promising candidate for vaccine design and development.

Publisher

European Medical Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3