Analysis of the relationship between field size and change in radiation dose to patient and staff based on radiographic technique in fluoroscopy and radiography

Author:

Ferreira Karin CristianeORCID,Denyak ValeriyORCID,Nunes Maria Cristina de AlencarORCID,Nunes Gracielly SoaresORCID,Real Jessica VillaORCID,Filipov DanielleORCID

Abstract

In discussions of radiological protection issues in fluoroscopy and radiography the radiation field size is usually mentioned in connection with unnecessary irradiation of the patient’s body parts that do not need to be imaged. However, excessive expansion of the field size leads also to some other effects: the excessive irradiation of assistants and visualized part of patient's body as well as the change in dose rate at the entrance of patient’s body by automatic brightness control. The aim of the present paper is to describe the results of an experimental study of the dependence of such effects on irradiation field size and primary X-ray spectrum. The measurements were carried out in conditions close to those of barium meal test. To simulate the patient body, 5 acrylic plates measuring 30 cm high x 30 cm long x 3 cm thick each were used, totalling 15 cm thick. The X2 RF Sensor (RAYSAFE) was used to measure the dose rate at the entrance and exit surface of the simulator and the specific model for measuring leakage and dispersion, the X2 Survey sensor (RAYSAFE), was used to measure the occupational dose rate. The occupational dose rate detector was located at the position that assistant usually maintains to support the patient's head and/or to administer the contrast. The results show that in radiographic mode dose rate at the exit of the patient’s body increases with the increase of field size. This increase reaches 85%. The increase of occupational dose rate in radiographic mode reaches 850% and is linearly proportional to the field area. In fluoroscopic mode, dose rate at the entrance of the patient’s body decreases proportionally to the increase of field side length because of the automatic brightness control. This effect reaches 25% with grid and 50% without grid.

Publisher

Sociedade Brasilieira de Protecao Radiologica - SBPR

Reference13 articles.

1. EUROPEAN COMMISSION. European Guidelines on Quality Criteria for Diagnostic Radiographic Images in Paediatrics. EUR 16261, ECSC-EC-EAEC, Brussels, Luxembourg, 1996. Available at: https://op.europa.eu/en/publication-detail/-/publication/47eb62b0-698d-4166-bc34-cc3f8d07d2e3

2. EUROPEAN COMMISSION. European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Radiation Protection N°185, Luxembourg: Publications Office of the European Union, 2018. Available at: https://op.europa.eu/en/publication-detail/-/publication/6e473ff5-bd4b-11e8-99ee-01aa75ed71a1/language-en

3. International Atomic Energy Agency. Patient Dose Optimization in Fluoroscopically Guided Interventional Procedures. IAEA-TECDOC-1641, IAEA, Vienna, 2010. Available at: https://www.iaea.org/publications/8176/patient-dose-optimization-in-fluoroscopically-guided-interventional-procedures

4. International Commission on Radiological Protection. Radiological protection in cardiology. ICRP Publication 120. Ann. ICRP, v. 42, n. 1, 2013. Available at: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20120

5. International Commission on Radiological Protection. Radiological protection in paediatric diagnostic and interventional radiology. ICRP Publication 121. Ann. ICRP, v. 42, n. 2, 2013. Available at: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20121

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3