Abstract
La agricultura es uno de los pilares fundamentales de cualquier población a nivel mundial y el manejo adecuado de información permite tomar decisiones oportunas para el avance de cualquier empresa que el ser humano desarrolle. Los entes de gobierno nacional y departamental apoyan renglones de la agricultura que emergen como una buena oportunidad de aumentar niveles de producción y de comercialización de productos [1], como es el cultivo del Aguacate (Persea americana Mill) variedad Hass. Entre los desafíos que tiene este tipo de cultivo, es encontrar zonas potenciales de siembra y productividad, con el fin de contribuir en desarrollos tecnológicos en el sector agrario, siendo beneficiarios los cultivadores de Aguacate Hass del departamento de Risaralda. Por lo tanto, con este estudio se propone formular un modelo que permita determinar zonas actuales y potenciales de cultivos de aguacate (Persea americana Mill) variedad Hass, en el departamento, con base en variables edafoclimáticas y de calidad del fruto, aprovechando las tendencias actuales de la agricultura de precisión, incluyendo técnicas derivadas del Aprendizaje Automático, como la utilización de algoritmos de Aprendizaje Supervisado, entre los cuales esta Random Forest.
Publisher
Universidad Catolica de Pereira