M2 Macrophage-Derived Exosomes Regulate Myocardial Ischemia-Reperfusion And Pyroptosis Via ROS/NLRP3 Pathway

Author:

Hu Hui,Qi Lei,Ren Changjie,Yan Suhua

Abstract

Objective: To evaluate whether M2 macrophage-derived exosomes protect against MI/R injury and reveal the protective mechanism of exosomes [Kourembanas 2015]. Methods: I/R model injury was induced by temporary left anterior descending coronary artery occlusion in Sprague-Dawley (SD) rats, macrophages isolated from bone marrow-derived macrophages (BMDMs) were induced to M2 polarization, and H9C2 cells subjected to hypoxia/reperfusion (H/R) were used to establish an in vitro model. I/R-induced rats and H/R-induced H9C2 cells were treated with M2-exos in vivo and in vitro, respectively. Masson staining was performed to observe myocardial fibrosis in rats. Immunohistochemical (IHC) staining of myocardial tissues showed the expression of NLRP3 inflammasome activation and pyrolysis. Exosomes derived from IL-4-treated macrophages (M2-exos) were detected by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western bolt. Western bolt was performed to determine the protein level, including NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, cleaved IL-1β, gasdermin D (GSDMD), and N-terminus of gasdermin D (GSDMD-N). Results: Activity of NLRP3 inflammasome and existence of pyroptosis in the rats subjected to MI/R were significantly higher than those in the control (P < 0.05). Moreover, we confirmed the accumulation of ROS during I/R injury in cardiomyocytes. M2-exos protected against I/R injury and reduced activity of NLRP3 inflammasome and existence of pyroptosis, accompanied with attenuating oxidative stress. In vitro studies showed similar effects, H9c2 cells co-cultured with M2-exos could attenuated H/R-induced cell injury, while M2-exos suppressed the expression of NLRP3 inflammasome and pyroptosis (P < 0.05).

Publisher

Carden Jennings Publishing Co.

Subject

Cardiology and Cardiovascular Medicine,Surgery,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3