Abstract
In this paper, mathematical modelling is performed for a group of fins in a heat sink in order to determine the optimum dimensionless thickness of the fins using 8 different types of cooling nanofluids including nanoparticles of aluminium, alumina, titanium, titanium dioxide, copper, copper oxide, iron and iron oxide (hematite) with water as the base fluid in a thermoelectric solar still. The heat sink is used to enhance thermoelectric cooling and heating to water. The flow crossing fins is considered laminar and fully developed. Copper with high thermal conductivity is considered as the material of flat plate fins. Different nanofluids with volume fractions of 1%, 3%, 5%, 7% and 9% with a nanoparticle diameter of 25, 50 and 75 nm are analyzed for fins with rectangular cross sections. Besides, the economic and environmental analysis is conducted on the thermoelectric solar still. It is also observed that the range of 3.65% to 3.95% is obtained for the optimum volume fraction in the used nanofluids. The carbon dioxide mitigation based on the environmental parameter and exergoenvironmental parameters in the solar still is about 23.78 tons of CO2 and 1.04 tons of CO2, respectively.
Publisher
Kaunas University of Technology (KTU)
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献