Spider Monkey Metaheuristic Tuning of Model Predictive Control with Perched Landing Stabilities for Novel Auxetic Landing Foot in Drones

Author:

M Magesh,Jawahar P.K.,S.N. Saranya,R Raj Jawahar

Abstract

The study focuses on improving drone landing gear dynamics through an innovative auxetic foot design, leveraging Spider Monkey Optimization for Model Predictive Control adjustment, facilitated by an Arduino-MATLAB interface. The auxetic foot design incorporates materials with a negative Poisson ratio, which allows the foot to expand and enhance energy absorption during landings. This design improves stability and safety during the perched landing process. The SMO-MPC approach is used to optimise the control of the perched landing gear. SMO, inspired by spider monkey search behaviour, optimises auxetic foot control input sequences with the limits of rotational displacement (theta = 30 deg to -30 deg) on the prediction horizon to improve landing gear performance. The real-time implementation of SMO-MPC is achieved through an Arduino-MATLAB interface on quadcopter drone. A comparative analysis is conducted to evaluate the benefits of SMO-MPC compared to conventional MPC methods. The results show that the SMO-MPC approach with auxetic foot design surpasses conventional MPC methods in terms of landing performance with 14.6 % improvement in damping force control and control of aerodynamic stability with pitch of 34.16 %, yaw of 16.87 %, and roll of 31.74 %.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3