Solar Energy Production Forecast Using Standard Recurrent Neural Networks, Long Short-Term Memory, and Gated Recurrent Unit

Author:

Buturache Adrian-Nicolae,Stancu Stelian

Abstract

Solar radiation is among the renewable resources on which modern society relies to partially replace the existing fossil fuel-based energy resources. Awareness of how the energy is produced must complement awareness of how it is consumed. In the economic context, the gains derive from predictability across the entire supply chain. This paper represents a compressive study on how standard recurrent neural networks, long short-term memory, and gated recurrent units can be used to forecast power production of photovoltaic (PV) systems. This approach can be used for other use cases in solar or even wind power prediction since it provides solid fundamentals for working with weather data and recurrent artificial neural networks, being the core of any smart grid management system. Few studies have explored how these models should be implemented, and even fewer have compared the outcomes of different model types. The data used consist of weather and power production data with a one-hour resolution. The data were further pre-processed to unveil the maximum information. The most effective model parameters were selected to make the forecast. Solar energy plays a key role among other renewable energy sources in the European Union’s climate action and the European Green Deal. Under these initiatives, important regulations are implemented and financial resources made available for those who possess the capabilities required to solve the open points. The much-needed predictability that gives the flexibility and robustness needed for deploying and adopting more renewable technologies can be ensured by utilizing a neural-based predictive approach.

Publisher

Kaunas University of Technology (KTU)

Subject

Economics and Econometrics,Engineering (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3