Deep Convolutional Generative Adversarial Networks for Automated Segmentation and Detection of Lung Adenocarcinoma Using Red Deer Optimization Algorithm

Author:

Sasikumar N.,Senthilkumar M.

Abstract

The diagnosis of early-stage lung cancer can be challenging due to several factors. Firstly, the asymptomatic nature of the disease means that it may not present any noticeable symptoms until it has progressed to later stages. Additionally, the use of computed tomography, which can be expensive and involves repetitive radiation exposure, can further complicate the diagnostic process. Even specialists may encounter difficulties when examining lung CT imagery to identify pulmonary nodules, particularly in the case of cell lung adenocarcinoma lesions.This paper suggests a unique deep learning-based Deep Convolutional Generative Adversarial Networks (DCGAN) model for lung cancer classification. The dataset utilized for the experimental purpose is accessed from the LUNA16 challenge database. This comprises 888 CT scans of the lungs. These images are initially segmented using Quick-CapsNet (QCN) model and applied with Red Deer Optimization (RDO) algorithm to extract the optimized features. Furthermore, the categorization between benign and malignant tumors is carried out using the DC-GAN model. The pulmonary nodule detection accuracy of the proposed model is 98.65%, indicating early-stage lung cancer. It is discovered to be superior to other existing techniques, such as sophisticated deep learning, straightforward machine learning, and hybrid methods applied to lung CT scans for nodule diagnosis. According to experimental findings, the suggested way can significantly help radiologists spot early lung cancer and facilitate prompt patient management.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3