Towards distribution-aware query answering in data markets

Author:

Asudeh Abolfazl1,Nargesian Fatemeh2

Affiliation:

1. University of Illinois Chicago

2. University of Rochester

Abstract

Addressing the increasing demand for data exchange has led to the development of data markets that facilitate transactional interactions between data buyers and data sellers. Still, cost-effective and distribution-aware query answering is a substantial challenge in these environments. In this paper, while differentiating different types of data markets, we take the initial steps towards addressing this challenge. In particular, we envision a unified query answering framework and discuss its functionalities. Our framework enables integrating data from different sources in a data market into a dataset that meets user-provided schema and distribution requirements cost-effectively. In order to facilitate consumers' query answering, our system discovers data views in the form of join-paths on relevant data sources, defines a get-next operation to query views, and estimates the cost of get-next on each view. The query answering engine then selects the next views to sample sequentially to collect the output data. Depending on the knowledge of the system from the underlying data sources, the view selection problem can be modeled as an instance of a multi-arm bandit or coupon collector's problem.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference42 articles.

1. Abolfazl Asudeh , Azade Nazi , Nick Koudas , and Gautam Das . 2019. Maximizing Gain over Flexible Attributes in Peer to Peer Marketplaces . In PAKDD. Springer , 327--345. Abolfazl Asudeh, Azade Nazi, Nick Koudas, and Gautam Das. 2019. Maximizing Gain over Flexible Attributes in Peer to Peer Marketplaces. In PAKDD. Springer, 327--345.

2. Abolfazl Asudeh , Azade Nazi , Nan Zhang , Gautam Das , and HV Jagadish . 2019 . RRR: Rank-regret representative. In SIGMOD. ACM. Abolfazl Asudeh, Azade Nazi, Nan Zhang, Gautam Das, and HV Jagadish. 2019. RRR: Rank-regret representative. In SIGMOD. ACM.

3. Alex Bogatu Alvaro A. A. Fernandes Norman W. Paton and Nikolaos Konstantinou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709--720. Alex Bogatu Alvaro A. A. Fernandes Norman W. Paton and Nikolaos Konstantinou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709--720.

4. The Skyline operator

5. Dan Brickley , Matthew Burgess , and Natasha F . Noy . 2019 . Google Dataset Search: Building a search engine for datasets in an open Web ecosystem. In WWW. 1365--1375. Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset Search: Building a search engine for datasets in an open Web ecosystem. In WWW. 1365--1375.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fainder: A Fast and Accurate Index for Distribution-Aware Dataset Search;Proceedings of the VLDB Endowment;2024-07

2. PLUTUS: Understanding Data Distribution Tailoring for Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. Data Acquisition for Improving Model Confidence;Proceedings of the ACM on Management of Data;2024-05-29

4. Data distribution tailoring revisited: cost-efficient integration of representative data;The VLDB Journal;2024-04-12

5. Sampling over Union of Joins;Companion of the 2023 International Conference on Management of Data;2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3