Efficient implementation of sorting on multi-core SIMD CPU architecture

Author:

Chhugani Jatin1,Nguyen Anthony D.1,Lee Victor W.1,Macy William1,Hagog Mostafa1,Chen Yen-Kuang1,Baransi Akram1,Kumar Sanjeev1,Dubey Pradeep1

Affiliation:

1. Intel Corporation

Abstract

Sorting a list of input numbers is one of the most fundamental problems in the field of computer science in general and high-throughput database applications in particular. Although literature abounds with various flavors of sorting algorithms, different architectures call for customized implementations to achieve faster sorting times. This paper presents an efficient implementation and detailed analysis of MergeSort on current CPU architectures. Our SIMD implementation with 128-bit SSE is 3.3X faster than the scalar version. In addition, our algorithm performs an efficient multiway merge, and is not constrained by the memory bandwidth. Our multi-threaded, SIMD implementation sorts 64 million floating point numbers in less than 0.5 seconds on a commodity 4-core Intel processor. This measured performance compares favorably with all previously published results. Additionally, the paper demonstrates performance scalability of the proposed sorting algorithm with respect to certain salient architectural features of modern chip multiprocessor (CMP) architectures, including SIMD width and core-count. Based on our analytical models of various architectural configurations, we see excellent scalability of our implementation with SIMD width scaling up to 16X wider than current SSE width of 128-bits, and CMP core-count scaling well beyond 32 cores. Cycle-accurate simulation of Intel's upcoming x86 many-core Larrabee architecture confirms scalability of our proposed algorithm.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Performance Hybrid Algorithm for Minimum Sum-of-Squares Clustering of Infinitely Tall Data;Mathematics;2024-06-21

2. Refinement of Parallel Algorithms Down to LLVM: Applied to Practically Efficient Parallel Sorting;Journal of Automated Reasoning;2024-06-19

3. SIMDified Data Processing - Foundations, Abstraction, and Advanced Techniques;Companion of the 2024 International Conference on Management of Data;2024-06-09

4. Data-centric workloads with MPI_Sort;Journal of Parallel and Distributed Computing;2024-05

5. thSORT: an efficient parallel sorting algorithm on multi-core DSPs;CCF Transactions on High Performance Computing;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3