Efficient and Reliable Estimation of Knowledge Graph Accuracy

Author:

Marchesin Stefano1,Silvello Gianmaria1

Affiliation:

1. University of Padua, Padua, Italy

Abstract

Data accuracy is a central dimension of data quality, especially when dealing with Knowledge Graphs (KGs). Auditing the accuracy of KGs is essential to make informed decisions in entity-oriented services or applications. However, manually evaluating the accuracy of large-scale KGs is prohibitively expensive, and research is focused on developing efficient sampling techniques for estimating KG accuracy. This work addresses the limitations of current KG accuracy estimation methods, which rely on the Wald method to build confidence intervals, addressing reliability issues such as zero-width and overshooting intervals. Our solution, rooted in the Wilson method and tailored for complex sampling designs, overcomes these limitations and ensures applicability across various evaluation scenarios. We show that the presented methods increase the reliability of accuracy estimates by up to two times when compared to the state-of-the-art while preserving or enhancing efficiency. Additionally, this consistency holds regardless of the KG size or topology.

Publisher

Association for Computing Machinery (ACM)

Reference43 articles.

1. Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions

2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11--15, 2007 (LNCS), Vol. 4825. Springer, 722--735. 10.1007/978-3-540-76298-0_52

3. A. Bonifati G. H. L. Fletcher H. Voigt and N. Yakovets. 2018. Querying Graphs. Morgan & Claypool Publishers. 10.2200/S00873ED1V01Y201808DTM051

4. Interval Estimation for a Binomial Proportion;Brown L. D.;Statist. Sci.,2001

5. G. Casella and R. L. Berger. 2002. Statistical Inference. Thomson Learning. https://books.google.it/books?id=0x_vAAAAMAAJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3