An inquiry into machine learning-based automatic configuration tuning services on real-world database management systems

Author:

Van Aken Dana1,Yang Dongsheng2,Brillard Sebastien3,Fiorino Ari1,Zhang Bohan4,Bilien Christian1,Pavlo Andrew1

Affiliation:

1. Carnegie Mellon University

2. Princeton University

3. Société Générale

4. OtterTune

Abstract

Modern database management systems (DBMS) expose dozens of configurable knobs that control their runtime behavior. Setting these knobs correctly for an application's workload can improve the performance and efficiency of the DBMS. But because of their complexity, tuning a DBMS often requires considerable effort from experienced database administrators (DBAs). Recent work on automated tuning methods using machine learning (ML) have shown to achieve better performance compared with expert DBAs. These ML-based methods, however, were evaluated on synthetic workloads with limited tuning opportunities, and thus it is unknown whether they provide the same benefit in a production environment. To better understand ML-based tuning, we conducted a thorough evaluation of ML-based DBMS knob tuning methods on an enterprise database application. We use the OtterTune tuning service to compare three state-of-the-art ML algorithms on an Oracle installation with a real workload trace. Our results with OtterTune show that these algorithms generate knob configurations that improve performance by 45% over enterprise-grade configurations. We also identify deployment and measurement issues that were overlooked by previous research in automated DBMS tuning services.

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. 2011. MySQL Tuning Primer Script. https://launchpad.net/mysql-tuning-primer. 2011. MySQL Tuning Primer Script. https://launchpad.net/mysql-tuning-primer.

2. 2021. FIO: Flexible I/O Tester. https://fio.readthedocs.io/en/latest/fio_doc.html. 2021. FIO: Flexible I/O Tester. https://fio.readthedocs.io/en/latest/fio_doc.html.

3. 2021. OtterTune. https://ottertune.cs.cmu.edu. 2021. OtterTune. https://ottertune.cs.cmu.edu.

4. 2021. OtterTune - Automated Database Tuning Service. https://ottertune.com. 2021. OtterTune - Automated Database Tuning Service. https://ottertune.com.

5. 2021. PostgreSQL Configuration Wizard. https://pgtune.leopard.in.ua. 2021. PostgreSQL Configuration Wizard. https://pgtune.leopard.in.ua.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient and noise-robust framework for high-dimensional tuning in big data analytics;Engineering Applications of Artificial Intelligence;2025-10

2. Autotuning Systems: Techniques, Challenges, and Opportunities;Companion of the 2025 International Conference on Management of Data;2025-06-22

3. Tiered-Indexing: Optimizing Access Methods for Skew;The VLDB Journal;2025-05-24

4. GPTuner: An LLM-Based Database Tuning System;ACM SIGMOD Record;2025-04-28

5. Learning-Based Distributed Spatio-Temporal k Nearest Neighbors Join;IEEE Transactions on Big Data;2025-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3