$\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the 3-Body/${\mathcal A}_2$ Elliptic Calogero Model

Author:

,Turbiner Alexander V., , , , ,Lopez Vieyra Juan Carlos, ,Guadarrama-Ayala Miguel A.,

Abstract

It is shown that the $\mathfrak{gl}(3)$ polynomial integrable system, introduced by Sokolov-Turbiner in [J. Phys. A 48 (2015), 155201, 15 pages, arXiv:1409.7439], is equivalent to the $\mathfrak{gl}(3)$ quantum Euler-Arnold top in a constant magnetic field. Their Hamiltonian as well as their third-order integral can be rewritten in terms of $\mathfrak{gl}(3)$ algebra generators. In turn, all these $\mathfrak{gl}(3)$ generators can be represented by the non-linear elements of the universal enveloping algebra of the 5-dimensional Heisenberg algebra $\mathfrak{h}_5(\hat{p}_{1,2},\hat{q}_{1,2}, I)$, thus, the Hamiltonian and integral are two elements of the universal enveloping algebra $U_{\mathfrak{h}_5}$. In this paper, four different representations of the $\mathfrak{h}_5$ Heisenberg algebra are used: (I) by differential operators in two real (complex) variables, (II) by finite-difference operators on uniform or exponential lattices. We discovered the existence of two 2-parametric bilinear and trilinear elements (denoted $H$ and $I$, respectively) of the universal enveloping algebra $U(\mathfrak{gl}(3))$ such that their Lie bracket (commutator) can be written as a linear superposition of nine so-called artifacts - the special bilinear elements of $U(\mathfrak{gl}(3))$, which vanish once the representation of the $\mathfrak{gl}(3)$-algebra generators is written in terms of the $\mathfrak{h}_5(\hat{p}_{1,2},\hat{q}_{1,2}, I)$-algebra generators. In this representation all nine artifacts vanish, two of the above-mentioned elements of $U(\mathfrak{gl}(3))$ (called the Hamiltonian $H$ and the integral $I$) commute(!); in particular, they become the Hamiltonian and the integral of the 3-body elliptic Calogero model, if $(\hat{p},\hat{q})$ are written in the standard coordinate-momentum representation. If $(\hat{p},\hat{q})$ are represented by finite-difference/discrete operators on uniform or exponential lattice, the Hamiltonian and the integral of the 3-body elliptic Calogero model become the isospectral, finite-difference operators on uniform-uniform or exponential-exponential lattices (or mixed) with polynomial coefficients. If $(\hat{p},\hat{q})$ are written in complex $(z,\bar{z})$ variables the Hamiltonian corresponds to a complexification of the 3-body elliptic Calogero model on ${\mathbb C}^2$.

Publisher

SIGMA (Symmetry, Integrability and Geometry: Methods and Application)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3