Abstract
This paper explores the transformative impact of Artificial Intelligence (AI) on the field of radiology. It examines the integration of AI in diagnostic imaging, its potential benefits in enhancing diagnostic accuracy, efficiency, and workflow, and the challenges associated with its implementation. The discussion also highlights future directions for AI in radiology and the implications for radiologists.
Publisher
International Journal of Innovative Science and Research Technology
Reference90 articles.
1. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7.
2. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358. doi:10.1056/NEJMra1814259.
3. Liu Y, Weissman J, Arnon A, et al. Artificial intelligence for radiology: Current applications and future directions. Radiology. 2021;298(1):1-13. doi:10.1148/radiol.2020202754.
4. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi:10.1038/s41586-019-1799-6.
5. Tanno R, Nakamura T, Saito Y, et al. The impact of artificial intelligence on the radiology workforce: A review. J Digit Imaging. 2021;34(4):750-758. doi:10.1007/s10278-021-00430-7.