Beyond Genomic Prediction: Combining Different Types of omics Data Can Improve Prediction of Hybrid Performance in Maize

Author:

Schrag Tobias A11,Westhues Matthias11,Schipprack Wolfgang1,Seifert Felix2,Thiemann Alexander2,Scholten Stefan1,Melchinger Albrecht E1

Affiliation:

1. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany

2. Biocenter Klein Flottbek, Developmental Biology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany

Abstract

Abstract The ability to predict the agronomic performance of single-crosses with high precision is essential for selecting superior candidates for hybrid breeding. With recent technological advances, thousands of new parent lines, and, consequently, millions of new hybrid combinations are possible in each breeding cycle, yet only a few hundred can be produced and phenotyped in multi-environment yield trials. Well established prediction approaches such as best linear unbiased prediction (BLUP) using pedigree data and whole-genome prediction using genomic data are limited in capturing epistasis and interactions occurring within and among downstream biological strata such as transcriptome and metabolome. Because mRNA and small RNA (sRNA) sequences are involved in transcriptional, translational and post-translational processes, we expect them to provide information influencing several biological strata. However, using sRNA data of parent lines to predict hybrid performance has not yet been addressed. Here, we gathered genomic, transcriptomic (mRNA and sRNA) and metabolomic data of parent lines to evaluate the ability of the data to predict the performance of untested hybrids for important agronomic traits in grain maize. We found a considerable interaction for predictive ability between predictor and trait, with mRNA data being a superior predictor for grain yield and genomic data for grain dry matter content, while sRNA performed relatively poorly for both traits. Combining mRNA and genomic data as predictors resulted in high predictive abilities across both traits and combining other predictors improved prediction over that of the individual predictors alone. We conclude that downstream “omics” can complement genomics for hybrid prediction, and, thereby, contribute to more efficient selection of hybrid candidates.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3