DNA Rereplication Is Susceptible to Nucleotide-Level Mutagenesis

Author:

Bui Duyen T,Li Joachim J1

Affiliation:

1. Department of Microbiology and Immunology, University of California San Francisco, California 94143

Abstract

Abstract The initiation of eukaryotic DNA replication at replication origins is tightly regulated to prevent re-initiation and re-replication within each cell cycle. This regulation is critical for genome stability as re-replication is an extremely potent inducer... The sources of genome instability, a hallmark of cancer, remain incompletely understood. One potential source is DNA rereplication, which arises when the mechanisms that prevent the reinitiation of replication origins within a single cell cycle are compromised. Using the budding yeast Saccharomyces cerevisiae, we previously showed that DNA rereplication is extremely potent at inducing gross chromosomal alterations and that this arises in part because of the susceptibility of rereplication forks to break. Here, we examine the ability of DNA rereplication to induce nucleotide-level mutations. During normal replication these mutations are restricted by three overlapping error-avoidance mechanisms: the nucleotide selectivity of replicative polymerases, their proofreading activity, and mismatch repair. Using lys2InsEA14, a frameshift reporter that is poorly proofread, we show that rereplication induces up to a 30× higher rate of frameshift mutations and that this mutagenesis is due to passage of the rereplication fork, not secondary to rereplication fork breakage. Rereplication can also induce comparable rates of frameshift and base-substitution mutations in a more general mutagenesis reporter CAN1, when the proofreading activity of DNA polymerase ε is inactivated. Finally, we show that the rereplication-induced mutagenesis of both lys2InsEA14 and CAN1 disappears in the absence of mismatch repair. These results suggest that mismatch repair is attenuated during rereplication, although at most sequences DNA polymerase proofreading provides enough error correction to mitigate the mutagenic consequences. Thus, rereplication can facilitate nucleotide-level mutagenesis in addition to inducing gross chromosomal alterations, broadening its potential role in genome instability.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3