Insight into the RNA Exosome Complex Through Modeling Pontocerebellar Hypoplasia Type 1b Disease Mutations in Yeast

Author:

Fasken Milo B11,Losh Jillian S231,Leung Sara W1,Brutus Sergine14,Avin Brittany15,Vaught Jillian C2,Potter-Birriel Jennifer16,Craig Taylor1,Conn Graeme L7,Mills-Lujan Katherine1,Corbett Anita H1,van Hoof Ambro23

Affiliation:

1. Department of Biology, Emory University, Atlanta, Georgia 30322

2. Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Texas 77030

3. The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030

4. Emory Initiative for Maximizing Student Diversity, Emory University, Atlanta, Georgia 30322

5. Emory Summer Undergraduate Research Experience Program, Emory University, Atlanta, Georgia 30322

6. Emory Postbaccalaureate Training Program, Emory University, Atlanta, Georgia 30322

7. Department of Biochemistry

Abstract

Abstract Pontocerebellar hypoplasia type 1b (PCH1b) is an autosomal recessive disorder that causes cerebellar hypoplasia and spinal motor neuron degeneration, leading to mortality in early childhood. PCH1b is caused by mutations in the RNA exosome subunit gene, EXOSC3. The RNA exosome is an evolutionarily conserved complex, consisting of nine different core subunits, and one or two 3′-5′ exoribonuclease subunits, that mediates several RNA degradation and processing steps. The goal of this study is to assess the functional consequences of the amino acid substitutions that have been identified in EXOSC3 in PCH1b patients. To analyze these EXOSC3 substitutions, we generated the corresponding amino acid substitutions in the Saccharomyces cerevisiae ortholog of EXOSC3, Rrp40. We find that the rrp40 variants corresponding to EXOSC3-G31A and -D132A do not affect yeast function when expressed as the sole copy of the essential Rrp40 protein. In contrast, the rrp40-W195R variant, corresponding to EXOSC3-W238R in PCH1b patients, impacts cell growth and RNA exosome function when expressed as the sole copy of Rrp40. The rrp40-W195R protein is unstable, and does not associate efficiently with the RNA exosome in cells that also express wild-type Rrp40. Consistent with these findings in yeast, the levels of mouse EXOSC3 variants are reduced compared to wild-type EXOSC3 in a neuronal cell line. These data suggest that cells possess a mechanism for optimal assembly of functional RNA exosome complex that can discriminate between wild-type and variant exosome subunits. Budding yeast can therefore serve as a useful tool to understand the molecular defects in the RNA exosome caused by PCH1b-associated amino acid substitutions in EXOSC3, and potentially extending to disease-associated substitutions in other exosome subunits.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3