The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities

Author:

Bellen Hugo J1,Levis Robert W2,He Yuchun1,Carlson Joseph W3,Evans-Holm Martha3,Bae Eunkyung4,Kim Jaeseob4,Metaxakis Athanasios5,Savakis Charalambos5,Schulze Karen L1,Hoskins Roger A3,Spradling Allan C2

Affiliation:

1. Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030

2. Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218

3. Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94720

4. Aprogen. Joongwon-Gu, Sungnam-Shi, Kyunggi-Do, 462-807, Seoul, Korea, and

5. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece

Abstract

Abstract The Drosophila Gene Disruption Project (GDP) has created a public collection of mutant strains containing single transposon insertions associated with different genes. These strains often disrupt gene function directly, allow production of new alleles, and have many other applications for analyzing gene function. Here we describe the addition of ∼7600 new strains, which were selected from >140,000 additional P or piggyBac element integrations and 12,500 newly generated insertions of the Minos transposon. These additions nearly double the size of the collection and increase the number of tagged genes to at least 9440, approximately two-thirds of all annotated protein-coding genes. We also compare the site specificity of the three major transposons used in the project. All three elements insert only rarely within many Polycomb-regulated regions, a property that may contribute to the origin of “transposon-free regions” (TFRs) in metazoan genomes. Within other genomic regions, Minos transposes essentially at random, whereas P or piggyBac elements display distinctive hotspots and coldspots. P elements, as previously shown, have a strong preference for promoters. In contrast, piggyBac site selectivity suggests that it has evolved to reduce deleterious and increase adaptive changes in host gene expression. The propensity of Minos to integrate broadly makes possible a hybrid finishing strategy for the project that will bring >95% of Drosophila genes under experimental control within their native genomic contexts.

Publisher

Oxford University Press (OUP)

Subject

Genetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3