The Chemistry of Carbon Black and Reinforcement

Author:

Studebaker Merton L.1

Affiliation:

1. 1Phillips Chemical Company, Akron, Ohio

Abstract

Abstract In this discussion, we have indicated that carbon blacks display both chemical and catalytic activity which appear to be sufficient to radically alter the chemistry of vulcanization. Much of the chemical reactivity results in removal of molecules or reactive intermediates which might otherwise produce crosslinks. However, in some cases the chemical reactivity seems to be associated with catalytic activity. When carbon black is heated with rubber, as during hot mixing or during cure, the following types of reaction are considered possible: a) Alkylation (in a broad sense) of carbon black by rubber molecules. This would be a case of alkylation of an aromatic material by an olefin. b) Isomerization of the double bond structure of rubber molecules resulting in conjugation. c) Chemisorption of rubber molecules with dissociation—dehydrogenation—and chemical combination of the rubber-free radicals so formed with the carbon black surface or with themselves, a type of polymerization. Insofar as addition to carbon black is involved, the results of a) and c) are, for practical purposes, identical. During vulcanization, the action of carbon black will be dependent upon the nature of the rubber, the nature of the curing system and the presence of other compounding ingredients. During cure, carbon black may be considered to act in some, if not all, of the following ways: 1) As a catalyst for dehydrogenation by sulfur. 2) As a catalyst for the oxidation of —SH intermediates to —S—S— crosslinks. 3) As a catalyst to convert polysulfides to disulfides or prevent polysulfide formation. (This particular activity has not been demonstrated ; it is suggested in this review only as a possibility.) 4) As a catalyst in activating accelerators by breaking —S—S— linkages, as in TMTD, —S—(S)x—S— linkages in the MBT polysulfide product of Dogadkin and Tutorskii˘, —S—N— linkages in Santocure, NOBS Special, etc. 5) As a catalyst for hydrogen sulfide formation (associated with 1, above) which is apparently necessary, at least under some conditions, to activate curing systems. 6) As a catalyst in the presence of oxidizing agents for the conversion of hydrogen sulfide (and sulfanes) to sulfur. 7) As a catalyst which promotes a type of decomposition of TMTD, and no doubt other systems, in a manner which is efficient in producing crosslinks. In the initial phases of vulcanization, its activity as a dehydrogenation catalyst is of considerable importance. This probably involves chemisorption with dissociation of α-methylene hydrogen atoms. This activity directs the chemical reactions of vulcanization to the α-methylene carbon atom and may lead directly to coupling rather than addition reactions at the double bond. After the dehydrogenation step, polymerization reactions, as described in this issue by Craig, should also be considered as possible. Agglomeration of carbon black particles plus high crosslink density seems to be strongly indicated. This would certainly result in heterogeneous crosslink distribution which would manifest itself in physical properties and possibly in some “chemical properties” of the reinforced vulcanizates.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3